La
tabla del Ocho.
Al
final me fue mal en matemáticas y mi papá como castigo dejó la Playstation bajo
llave. Me pusieron un 4 en los problemas y cuando él tuvo que firmar la prueba de
final de quinto se re enojó, me dijo:
Te ponés a estudiar ¡ya!, se te terminaron
los jueguitos hasta que levantés esa nota,
Y
cerró las puertitas de vidrio del mueble de debajo del tv con uno de esos
candados de combinación. Poner un equipo bajo llave parece cosa de loco en esta
época pero mi viejo es así, zarpado. Justo este finde ellos viajan solos y con
ese truco querrán asegurarse que no me pase las tardes destrozando Iraquíes en
el living.
Cuando
viajan, en casa me quedo con el abuelo, quien seguro me va a perseguir con su
ajedrez. En
su casa tiene una colección de tableros y piezas de todos los modelos: clásicos,
de torneo, de estudio, de viaje, mural. Cada vez que me quedo con él me cansa
con su juego milenario, como suele decir.
A mí el ajedrez me gusta, pero una cosa es jugarlo con los chicos en el cole y
otra es jugar con el abuelo. Nunca pude ganarle y solo una que otra noche
terminamos en tablas, más por las horas que se habían hecho que por las
posiciones de las partidas. A esas posiciones él le pone nombre y dice estructura
o balance y para cada situación tiene una forma distinta de darle valor, que si
el balance material, que si el tiempo, que el desarrollo… en fin, un montón de cosas
que no entiendo y me aburren. En la escuela aprendemos ajedrez pero no es lo
mismo. Nosotros jugamos a comer piezas y
eso no es ajedrez, dice él.
Al
abuelo también le gustan las matemáticas. El mayor número de libros de su
biblioteca son sobre el milenario juego…
pero a estos le siguen los de matemáticas. En fin, el abuelo tiene más libros
que yo autitos y juguetes, lo cual es mucho decir. A
mí las matemáticas también me gustan, lo que no me gusta es el modo en que las
aprendemos en la escuela. Cuentas, cuentas, problemas, uf. Como si la vida
fueran problemas de matemáticas, o de ajedrez.
En
fin, mis papás se fueron y ya jugué cinco partidas con el abuelo. Todas las perdí.
Afuera no puedo ir porque está feo y además es tarde. En la tale dan las mismas
películas desde que nací, creo. Además, mirar la tele y ver la Play a través de
los vidrios y no poder usarla… es una tortura.
El
candado tiene unas rueditas con números. En lugar de llave hay que ir
girándolas hasta que formen la clave secreta: entonces el candado se abre. Le
pedí al abuelo que lo abriera, que me dejara jugar un rato y que después no
dijera nada: se largó a reír y me dijo,
Pedro, bribón, no sé la clave pero
si la supiera tampoco te la daría, Tu papá te castigó, Tenés que cumplir con lo
que él quiere.
Como
me quedé con cara, el abuelo buscó papeles y un lápiz y me dijo,
A ver, Pedro, ¿vos estás castigado
por haber errado en matemáticas?
Sí,
dije, me saqué un cuatro en las cuentas,
Aja, muy bien,
me dijo, Vamos a cuentear un poco… Andá a mirar ese candado,
observalo bien, vamos a ver qué podemos hacer con él.
No
entendí. ¿Qué íbamos a hacer? Si está cerrado tan solo hay que abrirlo pero igual
el tema me interesó. Tal vez pudiéramos diseñar un rayo láser que lo destruyera
en un segundo… aunque si hiciéramos eso estaría sonado, porque mi papá al ver
el derretido se enteraría de todo.
En
fin, fui a ver el candado como me mandaron, vi que tiene cinco rueditas y que
cada una tiene grabados los números del 0 al 9; por lo demás, nada vi; era
fuerte.
El
abuelo tomó una hoja y trazó cinco rayitas: _ _ _ _ _
Me
dijo,
¿Cuántos números tiene cada
ruedita?
Nueve,
le dije,
Bruto,
me dijo, ¿Cuántos números tiene cada
ruedita? Repitió.
Pensé
un poco, Diez, dije,
Aja,
dijo el abuelo, diez números y cinco
rueditas, Entonces ¿Cuántos números posibles hay para abrir el candado?
Cincuenta,
dije,
Brutazo,
me dijo. Pensá. Por eso te sacaste un
cuatro, por no pensar.
Pensé:
cinco ruedas, diez números… porque el cero también es un número aunque no valga
nada, Son…
¿No sé, abuelo, un montón, cuántos
son?
El
abuelo dio vuelta el papel para que yo lo viera derecho, y me dijo, diez números en la primera, diez en la
segunda…
Veinte,
dije, y vi como sus ojos se entristecían. Después se sonrió y vi los dientes
que le faltan, tres por lo menos.
Me
dijo,
Las rayitas simbolizan números que
aún no están, pero en cada rayita pueden ir solo uno de diez, de modo qué, si
en la primera hay diez opciones, y en segunda lo mismo, el número de
combinaciones posibles juntando dos rayitas es…
¡Veinte! Insistí.
¡Cien! Dijo
él, Cien, Pedro, Cien, porque las dos
rayitas simbolizan a un número de dos cifras y los números de dos cifras van
del 00 al…
99 dije,
¡Bien!, gritó, bien, bien, bien, son cien números por lo
tanto, con dos rayitas. Ahora, ¿con tres rayitas…? y no me digás trescientos, me
gritó.
Con tres rayitas, dije…
Cien… por diez… me
dijo y ¡Mil! Resolvió.
Uf, no entiendo nada, le
dije.
Claro, Pedro, por eso te va mal en
matemáticas, porque no entendés lo que es un número de más de una cifra, es
decir, dijo, de más
de una rayita.
Acá
se las hago corta porque me metió una historia de unos barbudos que fabricaban
ziguritas, que eran unas pirámides más altas que la miércoles desde donde los turcos
esos miraban el cielo y desde allá arriba anotaban todo en unos libros de barro
que debían de ser una mugre, me imagino, porque hay que ser sucio para hacer un
libro de barro. Pero bueno, el abuelo me porfió que así era, que esto pasó
antes de que se inventara el papel, y dijo enseguida que, en esos libros, los
que estaban en babia anotaron por primera vez un número primero y otro al lado,
y que aunque los dos eran el mismo número… ¡no
era el mismo su valor!
Se
imaginarán que esto es inentendible pero él agarró el tablero y me dijo,
Imagínate que tenés que contar muchos números ¿Cómo hacés?
Casi me río por dentro, los cuento, dije,
Sí, me dijo, pero ¿Cómo?
Y, dije, uno, dos, tres, cuatro… así,
Levantó las cejas, Seguí, me dijo,
cinco, seis, siete…
Bajó las cejas, ladeó la cabeza, miró para arriba, Seguí, dijo.
ocho, nueve diez, once, doce,
Asentía con la cabeza como esperando algo obvio,
trece, catorce…
Me hacía así con la mano para que siguiera,
quince… dieciséis,
Pará, gritó, ¿No te das cuenta? ¡Empezaste a repetir números! En realidad, hace rato que te repetís, aclaró, desde el once, pero solo se nota si lo escribís:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16…etc.
Con el dieciséis no tenés excusa, continuó, dijiste diez y seis. ¿Ves? El diez es un
uno pero puesto en la segunda rayita, no en la primera. Un uno en la segunda
raya: diez, más seis en la primera: dieciséis: 1
6
Si, dije, obvio.
Bueno,
dijo el abuelo y sonrió como si hubiera descubierto América, Eso fue inventado
por los babianiquelonios, dijo, Antes de
esos tipos nunca nadie había repetido números para contar. La viveza de esos pensadores
fue que con pocos números distintos podés
escribir números muy muy grandes. Tan
grandes como vos quieras.
No
conforme con su maravilloso anuncio abrió la caja de las piezas, tomó ocho
peones y los fue ubicando de a uno sobre la columna h del tablero, a medida que
contaba 1, 2, 3, 4, 5 6, 7, 8.
8 peones en h= 8
1 peón en g simboliza 8 peones en h.
Dijo
entonces, Ves, esto es lo que nosotros hacemos
-y lo que hicieron los babilonios*, que así es como se llamaban. Ellos contaban
con un mismo número hasta llenar una fila, y cuando la fila estaba llena la
vaciaban y ponían un solo número en la fila siguiente -que en nuestro tablero
de ajedrez vendría a ser la columna g.
Fíjate,
dijo,
Ahora,
continuó, cada peón que ponga en la columna g significará una columna h llena
de peones (es decir, 8 peones): un peón en g = 8 + h
No
entiendo, dije.
1 peón en g es 8 + 6 peones en h = 14
Pedro,
me dijo, si querés escribir siete, ponés en la columna h siete peones y listo,
pero si querés escribir catorce, ponés ¡un peón en la columna g (el cual valdrá
8) y seis peones en la columna h! Así, ocho más seis ¡te dará catorce!
Bien
amigos, ustedes se darán una idea de lo que pensé sobre la salud mental de mi
abuelo. Los ojos le brillaban como si fueran dos fuegos y la sonrisa le cruzaba
la cara como si el mundo fuera desde hacía un par de minutos mucho más sano y
más hermoso para todos, y lo único que me había explicado era que ocho más seis
es catorce. Me acordé de mi viejo, ¡el
borracho!, hubiera dicho.
Abu,
le dije, con mucho cuidado, como se les habla a los viejitos que están en los lugares
árticos esos donde los ponen, ya sé que
ocho más seis es catorce, desde cuarto grado que lo sé.
Ay, Pedro, me dijo y me tomó la cabeza con sus enormes manos y me refregó el pelo y me envolvió hasta que quedé debajo de sus brazos de león, recostado contra su panza gorda y caliente, lo que quiero enseñarte, dijo, es un modo de escribir catorce con solo siete peones.
……….
Y ¿para qué, abuelo querido, dije, quisiera yo aprender a escribir catorce, con siete peones?
Pues, dijo, para que sepas qué significa cada número, para que sepas la historia de los números y los problemas de la matemática, para que no te salgan mal las pruebas, y ¡para que te diviertas con las cuentas!
Lo miré. ¿Divertirme? Dije.
Sí, me dijo, divertirte. Y añadió, Mirá, hagamos esto, voy a hablar con tu papá y si está de acuerdo te voy a dar un problemita, y si lo solucionás, vas a poder abrir el candado y usar la playstation.
¿Lo harías?, dije,
No, me dijo, lo harías vos.
Meta, le dije.
El abuelo agarró el celu y se fue afuera a hablar con mi papá, volvió al toque y se puso a escribir unos números en unas columnas, después tomó un papel aparte y me dio cinco cuentas sin resolver, y me dijo: Pedro, si resolvés estas cuentas encontrarás la clave del candado y podrás usar la video todo lo que quieras.
Buenísimo, dije y tomé el papel y la birome. Había cinco cuentas:
14
– 4 =
45
– 36=
32
– 27=
80
– 67=
51
– 40=
Las miré bien, y dije,
Abu, esto está mal, las rueditas
son cinco y las cuentas son cinco, es decir que con cada cuenta debo encontrar
un número para el candado…
Sí,
dijo el abuelo sonriente aún.
Dije,
Abue, hay cuentas cuyo resultado es más
de nueve y por lo tanto dan números que no existen en las rueditas.
Me dijo el abuelo:
Pedro, lo que hemos hablado te alcanza y sobra para resolver las cuentas en forma correcta: hallar solo cinco números menores de diez –uno por cada resultado- y con ellos abrir el candado.
Después
de pensar durante buena parte de la noche y la mañana siguiente, sin poder
resolver el acertijo, mientras miraba el tablero de ajedrez y los peones, en un
segundo comprendí el truco. Fue como una luz en mi cabeza, miraba un número y
era otro. Tomé el papel y en un minuto resolví las cinco cuentas. Abrí el
candado y agradecido corrí a llamar al abuelo que leía en el patio,
Abu, le
dije, ¡vamos, que te juego unas partidas!
*Los babilonios utilizaron un sistema sexagesimal y su escritur se hacía con símbolos, no con números. Nuestros números son llamados arábigos, y su valor posicional con la inclusión del cero proviene de la India.
Sergio Galarza,
docente.
No hay comentarios:
Publicar un comentario